login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353665
Expansion of e.g.f. exp((exp(x) - 1)^4).
5
1, 0, 0, 0, 24, 240, 1560, 8400, 60984, 912240, 15938520, 242998800, 3300493944, 44583979440, 690641504280, 12868117189200, 264164524958904, 5481631005177840, 112822632387018840, 2367468210865875600, 52624238539033647864, 1258531092544541563440
OFFSET
0,5
FORMULA
E.g.f.: exp((exp(x) - 1)^4).
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/(k! * Product_{j=1..4*k} (1 - j * x)).
a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^4)))
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(k!*prod(j=1, 4*k, 1-j*x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 2)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 07 2022
STATUS
approved