login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A327505
Number of set partitions of [n] where each subset is again partitioned into four nonempty subsets.
9
1, 0, 0, 0, 1, 10, 65, 350, 1736, 9030, 60355, 561550, 6183221, 69469400, 761767370, 8239194600, 91058524831, 1073790441370, 13900626022985, 196759304278250, 2963381404815566, 46227649788125190, 736940002561065325, 12005645243802471250, 201482801573414254301
OFFSET
0,6
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^4/4!).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(24^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 4), j=4..n))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 4], {j, 4, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
PROG
(PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/(24^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=4 of A324162.
Cf. A346895.
Sequence in context: A000453 A365532 A365525 * A346954 A346895 A291231
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved