login
A327503
Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor that is 1 or not a perfect power (A327501, A327502).
3
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A052409 and A158378 at a(216) = 2, A052409(216) = A158378(216) = 3.
A multiset is aperiodic if its multiplicities are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Heinz numbers of aperiodic multisets are numbers that are not perfect powers (A007916).
a(n) does not depend only on the prime signature of n. A351948 gives the positions where a(A046523(n)) <> a(n). n = 125000 is the first time this happens, see the examples. - Antti Karttunen, Apr 03 2022
FORMULA
a(2^n) = n.
EXAMPLE
The transformation A327502 takes 144 -> 2 -> 1, so a(144) = 2.
From Antti Karttunen, Apr 03 2022: (Start)
For n = 1728 = 2^6 * 3^3, A327501(1728) = 864 = 2^5 * 3^3, and therefore A327502(1728) = 1728/864 = 2. A327501(2) = 2, thus A327502(2) = 2/2 = 1, so we reached 1 (= A327502(1)) in two steps, and therefore a(1728) = 2.
For n = 125000 = 2^3 * 5^6, A327501(125000) = 31250 = 2^1 * 5^6, and therefore A327502(125000) = 125000/31250 = 4. A327501(4) = 2, thus A327502(4) = 4/2 = 2, from which we reach 1 in one more step, therefore a(125000) = 3.
(End)
MATHEMATICA
Table[Length[FixedPointList[#/Max[Select[Divisors[#], GCD@@Last/@FactorInteger[#]==1&]]&, n]]-2, {n, 100}]
PROG
(PARI)
A327502(n) = if(n==1, 1, n/vecmax(select(x->((x>1) && !ispower(x)), divisors(n))));
A327503(n) = { my(u=A327502(n)); if(u==n, 0, 1+A327503(u)); }; \\ Antti Karttunen, Apr 02 2022
CROSSREFS
See link for additional cross-references.
Cf. also A327500.
Sequence in context: A253641 A158378 A052409 * A051904 A070012 A375034
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 16 2019
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Apr 02 2022
STATUS
approved