login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070012 Floor of number of prime factors of n divided by the number of n's distinct prime factors. 7
1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

a(n) is the integer part of the average of the exponents in the prime factorization of n.

LINKS

G. C. Greubel, Table of n, a(n) for n = 2..5000

FORMULA

a(n) = floor(bigomega(n)/omega(n)) for n>=2.

EXAMPLE

a(12)=1 because 12=2^2 * 3^1 and floor(bigomega(12)/omega(12)) = floor((2+1)/2) = 1.

a(36)=2 because 36=2^2 * 3^2 and floor(bigomega(36)/omega(36)) = floor((2+2)/2) = 2.

a(60)=1 because 60=2^2 * 3^1 * 5^1 and floor(bigomega(60)/omega(60)) = floor((2+1+1)/3) = 1.

36 is in A067340. 12 and 60 are in A070011.

MATHEMATICA

A070012[n_]:=Floor[PrimeOmega[n]/PrimeNu[n]]; Array[A070012, 100]

PROG

(PARI) v=[]; for(n=2, 150, v=concat(v, (bigomega(n)\omega(n)))); v

CROSSREFS

Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is integer before floor applied), A070011 (ratio is not an integer), A070013 (ratio rounded), A070014 (ceiling of ratio), A046660 (bigomega(n)-omega(n)).

Sequence in context: A158378 A052409 A051904 * A071178 A326515 A319864

Adjacent sequences:  A070009 A070010 A070011 * A070013 A070014 A070015

KEYWORD

nonn

AUTHOR

Rick L. Shepherd, Apr 11 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 00:41 EDT 2020. Contains 333117 sequences. (Running on oeis4.)