login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373365
a(n) = gcd(A001414(n), A064097(n)), where A001414 is the sum of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 5, 7, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 6, 2, 8, 1, 7, 1, 2, 1, 1, 1, 1, 1, 1, 9, 2, 1, 1, 4, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
OFFSET
1,4
COMMENTS
As A001414 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication.
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A064097(n) = if(1==n, 0, 1+A064097(n-(n/vecmin(factor(n)[, 1]))));
A373365(n) = gcd(A001414(n), A064097(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved