OFFSET
1,2
COMMENTS
The number of divisors that are 1 or not a perfect power is given by A327502.
A multiset is aperiodic if its multiplicities are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Heinz numbers of aperiodic multisets are numbers that are not perfect powers (A007916).
a(n) = n iff n is in A175082. - Bernard Schott, Sep 20 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000
EXAMPLE
The divisors of 36 that are not perfect powers are {1, 2, 3, 6, 12, 18}, so a(36) = 18.
MATHEMATICA
Table[Max[Select[Divisors[n], GCD@@Last/@FactorInteger[#]==1&]], {n, 100}]
PROG
(PARI) isp(n) = !ispower(n) && (n>1); \\ A007916
a(n) = if (n==1, 1, vecmax(select(x->isp(x), divisors(n)))); \\ Michel Marcus, Sep 18 2019
(Magma) [1] cat [Max([d:d in Divisors(n)| d gt 1 and not IsPower(d)]):n in [2..70]]; // Marius A. Burtea, Sep 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 16 2019
STATUS
approved