OFFSET
0,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..494
Wikipedia, Partition of a set
FORMULA
E.g.f.: exp((exp(x)-1)^5/5!).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/(120^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 5), j=5..n))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 5], {j, 5, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
PROG
(PARI) a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/(120^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved