login
A327506
Number of set partitions of [n] where each subset is again partitioned into five nonempty subsets.
8
1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806386946, 25524454410, 354189159871, 4751404201923, 62042283083648, 803415873180606, 10624141898153091, 148849893975447819, 2279247411153872566, 38395707003954897234
OFFSET
0,7
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^5/5!).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/(120^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 5), j=5..n))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 5], {j, 5, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
PROG
(PARI) a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/(120^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=5 of A324162.
Sequence in context: A056281 A000481 A365528 * A346955 A346920 A215765
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved