login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327508
Number of set partitions of [n] where each subset is again partitioned into seven nonempty subsets.
2
1, 0, 0, 0, 0, 0, 0, 1, 28, 462, 5880, 63987, 627396, 5715424, 49330996, 408921513, 3292212924, 26136933186, 211891946448, 1910903676319, 21958686224932, 338516695449108, 6257281367040396, 122152192372692405, 2369188918134769500, 44783158458575933110
OFFSET
0,9
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^7/7!).
a(n) = Sum_{k=0..floor(n/7)} (7*k)! * Stirling2(n,7*k)/(7!^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 7), j=7..n))
end:
seq(a(n), n=0..27);
PROG
(PARI) a(n) = sum(k=0, n\7, (7*k)!*stirling(n, 7*k, 2)/(7!^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=7 of A324162.
Sequence in context: A080315 A022752 A000771 * A215767 A079518 A320820
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved