OFFSET
0,9
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..496
Wikipedia, Partition of a set
FORMULA
E.g.f.: exp((exp(x)-1)^7/7!).
a(n) = Sum_{k=0..floor(n/7)} (7*k)! * Stirling2(n,7*k)/(7!^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 7), j=7..n))
end:
seq(a(n), n=0..27);
PROG
(PARI) a(n) = sum(k=0, n\7, (7*k)!*stirling(n, 7*k, 2)/(7!^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved