login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320820
Number of partitions of n with exactly seven sorts of part 1 which are introduced in ascending order.
2
1, 28, 463, 5909, 64479, 633796, 5786275, 50033463, 415225854, 3338335646, 26179143977, 201266007483, 1522856635641, 11374331041836, 84061202478127, 615860361908534, 4479596579257904, 32388729758708314, 233011769893620853, 1669336230635613631
OFFSET
7,2
LINKS
FORMULA
a(n) = A320738(n) - A320737(n).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(7):
seq(a(n), n=7..35);
CROSSREFS
Column k=7 of A292746.
Sequence in context: A327508 A215767 A079518 * A160060 A115226 A086782
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved