login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320817
Number of partitions of n with exactly four sorts of part 1 which are introduced in ascending order.
2
1, 10, 66, 361, 1778, 8207, 36310, 156095, 657785, 2733065, 11241497, 45900679, 186420826, 754165809, 3042167236, 12245294090, 49211278321, 197535872510, 792216674789, 3175088068035, 12719020008668, 50932090504830, 203896407951944, 816089798651203
OFFSET
4,2
LINKS
FORMULA
a(n) = A320735(n) - A320734(n).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(4):
seq(a(n), n=4..35);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
a[n_] := With[{k = 4}, b[n, n, k] - b[n, n, k-1]];
a /@ Range[4, 35] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A292746.
Sequence in context: A024391 A074362 A080421 * A004310 A026853 A177452
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved