login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320816
Number of partitions of n with exactly three sorts of part 1 which are introduced in ascending order.
2
1, 6, 26, 97, 334, 1095, 3482, 10855, 33405, 101925, 309237, 934691, 2818110, 8482505, 25504000, 76625146, 230101961, 690759226, 2073184749, 6221368879, 18667736528, 56010470158, 168045932624, 504166843427, 1512558622966, 4537792056226, 13613608545770
OFFSET
3,2
LINKS
FORMULA
a(n) = A320734(n) - A320733(n).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(3):
seq(a(n), n=3..35);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
a[n_] := With[{k = 3}, b[n, n, k] - b[n, n, k - 1]];
a /@ Range[3, 35] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A292746.
Sequence in context: A055589 A318947 A377679 * A239179 A307309 A186314
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved