OFFSET
0,4
COMMENTS
In p-adic field, the exponential function exp(x) is defined as Sum_{k>=0} x^k/k!.
Let |x|_2 be the 2-adic metric of x, and v(x, 2) = A007814(x) be the 2-adic valuation of x. For any 2-adic number x, exp(x) = Sum_{i>=0} x^i/i! converges implies that lim_{k->+oo} |x^k/k!|_2 = 0, that is, lim_{k->+oo} v(x^k/k!, 2) = +oo, or lim_{k->+oo} (k*(v(x, 2) - 1) + A000120(i)) = +oo. So v(x, 2) > 1, x is a 2-adic integer divisible by 4. On the other hand, for any integer n and i >= A320840(n), v(4^i/i!, 2) = A092391(i) >= n, so approximation of exp(4) up to 2^n is wholly determined by Sum_{i=0..A320840(n)-1} 4^i/i! (see formula section below), which is well-defined because it has only finitely many terms.
When extended to a function over the metric completion of the p-adic field, exp(x) has radius of convergence p^(-1/(p-1)).
a(n) is the multiplicative inverse of A321689(n) modulo 2^n. - Jianing Song, Nov 17 2018
LINKS
Jianing Song, Table of n, a(n) for n = 0..2000
Wikipedia, p-adic number
FORMULA
EXAMPLE
A320840(1) = 1, 4^0/0! = 1, so a(1) = 1.
A320840(4) = 3, Sum_{i=0..2} 4^i/i! = 13, so a(4) = 13.
A320840(6) = 5, Sum_{i=0..4} 4^i/i! = 103/3 == 13 (mod 64), so a(6) = 13.
A320840(8) = 6, Sum_{i=0..5} 4^i/i! = 643/15 == 77 (mod 256), so a(8) = 77.
A320840(9) = 7, Sum_{i=0..6} 4^i/i! = 437/9 == 333 (mod 512), so a(9) = 333.
PROG
(PARI) a(n) = lift(sum(i=0, n-1-(n>=2), Mod(4^i/i!, 2^n)))
(PARI) a(n) = lift(exp(4 + O(2^n))); \\ Andrew Howroyd, Nov 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 21 2018
STATUS
approved