login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051899
Smallest prime p such that (p-1)/(2*n) is also a prime.
2
5, 13, 13, 17, 31, 37, 29, 113, 37, 41, 67, 73, 53, 197, 61, 97, 103, 73, 191, 281, 127, 89, 139, 97, 101, 157, 109, 113, 1103, 181, 311, 193, 199, 137, 211, 937, 149, 229, 157, 241, 1559, 421, 173, 617, 181, 277, 283, 193, 197, 701, 307, 313, 743, 541, 331
OFFSET
1,1
LINKS
FORMULA
(a(n)-1)/2n = A051686(n), the smallest 2k-Germain primes.
EXAMPLE
a(2) = 13 because (13 - 1)/4 = 3 = A051686(2);
a(3) = 13 as well, because (13 - 1)/6 = 2 = A051686(3);
a(8) = 113 because (113 - 1)/16 = 7 is a prime.
PROG
(PARI) isp(q) = (denominator(q)==1) && isprime(q);
a(n) = {my(p = 2); while (!isp((p-1)/(2*n)), p = nextprime(p+1)); p; } \\ Michel Marcus, May 29 2018
(PARI) a(n) = forprime(p = 2, oo, q = 2 * p * n + 1; if(isprime(q), return(q))) \\ David A. Corneth, May 29 2018
CROSSREFS
Sequence in context: A320814 A274302 A274300 * A085956 A232610 A235337
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Dec 16 1999
STATUS
approved