login
A327507
Number of set partitions of [n] where each subset is again partitioned into six nonempty subsets.
2
1, 0, 0, 0, 0, 0, 1, 21, 266, 2646, 22827, 179487, 1324114, 9357348, 64991927, 469882413, 4008715074, 46160063586, 691114045987, 11535301966755, 194240576089826, 3186376950695400, 50592286213334943, 780299037934036929, 11788245937182037114
OFFSET
0,8
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^6/6!).
a(n) = Sum_{k=0..floor(n/6)} (6*k)! * Stirling2(n,6*k)/(6!^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 6), j=6..n))
end:
seq(a(n), n=0..27);
PROG
(PARI) a(n) = sum(k=0, n\6, (6*k)!*stirling(n, 6*k, 2)/(6!^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=6 of A324162.
Sequence in context: A133717 A056282 A000770 * A133105 A215766 A320819
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved