login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133105 Number of partitions of n^4 into n distinct nonzero squares. 3
1, 0, 1, 0, 21, 266, 2843, 55932, 884756, 13816633, 283194588, 5375499165, 125889124371, 3202887665805, 80542392920980, 2270543992935431, 64253268814048352, 1892633465941308859, 59116753827795287519, 1886846993941912938452 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Robert Gerbicz, May 09 2008, Table of n, a(n) for n = 1..20

EXAMPLE

a(3)=1 because there is exactly one way to express 3^4 as the sum of 3 distinct nonzero squares: 81 = 1^2 + 4^2 + 8^2.

PROG

(PARI) a(i, n, k)=local(s, j); if(k==1, if(issquare(n) && n<i^2, return(1), return(0)), s=0; for(j=ceil(sqrt(n/k)), min(i-1, floor(sqrt(n-k+1))), s+=a(j, n-j^2, k-1)); return(s)) for(n=1, 50, m=n^4; k=n; print1(a(m+1, m, k)", ") ) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007

CROSSREFS

Cf. A000161, A000378, A000141, A005875, A000118, A000132, A008451.

Cf. A133104 (number of ways to express n^4 as a sum of n nonzero squares), A133102 (number of ways to express n^3 as a sum of n distinct nonzero squares).

Sequence in context: A056282 A000770 A327507 * A215766 A320819 A228215

Adjacent sequences:  A133102 A133103 A133104 * A133106 A133107 A133108

KEYWORD

nonn

AUTHOR

Hugo Pfoertner, Sep 12 2007

EXTENSIONS

a(10) from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007

a(11) onwards from Robert Gerbicz, May 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 18:29 EDT 2021. Contains 347489 sequences. (Running on oeis4.)