login
A327510
Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 1155, 22275, 359502, 5135130, 67128490, 820784250, 9528822303, 106175420065, 1144618783815, 12011663703975, 123297356170054, 1243260840764910, 12377559175117290, 122870882863640450, 1247553197735599755, 13803307806688911225
OFFSET
0,11
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^9/9!).
a(n) = Sum_{k=0..floor(n/9)} (9*k)! * Stirling2(n,9*k)/(9!^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 9), j=9..n))
end:
seq(a(n), n=0..27);
PROG
(PARI) a(n) = sum(k=0, n\9, (9*k)!*stirling(n, 9*k, 2)/(9!^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=9 of A324162.
Sequence in context: A140346 A268870 A049447 * A215769 A320822 A229796
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved