login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327510
Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 1155, 22275, 359502, 5135130, 67128490, 820784250, 9528822303, 106175420065, 1144618783815, 12011663703975, 123297356170054, 1243260840764910, 12377559175117290, 122870882863640450, 1247553197735599755, 13803307806688911225
OFFSET
0,11
LINKS
FORMULA
E.g.f.: exp((exp(x)-1)^9/9!).
a(n) = Sum_{k=0..floor(n/9)} (9*k)! * Stirling2(n,9*k)/(9!^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 9), j=9..n))
end:
seq(a(n), n=0..27);
PROG
(PARI) a(n) = sum(k=0, n\9, (9*k)!*stirling(n, 9*k, 2)/(9!^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=9 of A324162.
Sequence in context: A140346 A268870 A049447 * A215769 A320822 A229796
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2019
STATUS
approved