login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets.
2

%I #8 May 08 2022 08:24:09

%S 1,0,0,0,0,0,0,0,0,1,45,1155,22275,359502,5135130,67128490,820784250,

%T 9528822303,106175420065,1144618783815,12011663703975,123297356170054,

%U 1243260840764910,12377559175117290,122870882863640450,1247553197735599755,13803307806688911225

%N Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets.

%H Alois P. Heinz, <a href="/A327510/b327510.txt">Table of n, a(n) for n = 0..500</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F E.g.f.: exp((exp(x)-1)^9/9!).

%F a(n) = Sum_{k=0..floor(n/9)} (9*k)! * Stirling2(n,9*k)/(9!^k * k!). - _Seiichi Manyama_, May 07 2022

%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)

%p *binomial(n-1, j-1)*Stirling2(j, 9), j=9..n))

%p end:

%p seq(a(n), n=0..27);

%o (PARI) a(n) = sum(k=0, n\9, (9*k)!*stirling(n, 9*k, 2)/(9!^k*k!)); \\ _Seiichi Manyama_, May 07 2022

%Y Column k=9 of A324162.

%K nonn

%O 0,11

%A _Alois P. Heinz_, Sep 14 2019