login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229796
Number of 3 X 3 0..n arrays with rows and columns in lexicographically nondecreasing order.
1
45, 1169, 14178, 102251, 520017, 2066505, 6842284, 19692165, 50724037, 119421753, 261015470, 535936479, 1043365337, 1940082033, 3466044984, 5978361865, 9995569629, 16254413569, 25781605914, 39983353235, 60755768865, 90619631609
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/20)*n^9 + (11/24)*n^8 + (329/180)*n^7 + (1601/360)*n^6 + (545/72)*n^5 + (347/36)*n^4 + (3367/360)*n^3 + (313/45)*n^2 + (37/10)*n + 1.
Conjectures from Colin Barker, Sep 21 2018: (Start)
G.f.: x*(45 + 719*x + 4513*x^2 + 7676*x^3 + 4687*x^4 + 420*x^5 + 121*x^6 - 46*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=2:
..0..1..1....0..0..2....0..0..0....1..1..2....1..1..1....0..2..2....0..2..2
..0..1..2....1..2..1....0..2..2....1..2..0....1..1..2....1..0..2....1..0..1
..2..1..0....2..0..1....0..2..2....2..0..1....2..2..1....1..2..2....1..2..1
CROSSREFS
Row 3 of A229794.
Sequence in context: A327510 A215769 A320822 * A143400 A226981 A173000
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 29 2013
STATUS
approved