Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 21 2018 08:54:44
%S 45,1169,14178,102251,520017,2066505,6842284,19692165,50724037,
%T 119421753,261015470,535936479,1043365337,1940082033,3466044984,
%U 5978361865,9995569629,16254413569,25781605914,39983353235,60755768865,90619631609
%N Number of 3 X 3 0..n arrays with rows and columns in lexicographically nondecreasing order.
%H R. H. Hardin, <a href="/A229796/b229796.txt">Table of n, a(n) for n = 1..207</a>
%F Empirical: a(n) = (1/20)*n^9 + (11/24)*n^8 + (329/180)*n^7 + (1601/360)*n^6 + (545/72)*n^5 + (347/36)*n^4 + (3367/360)*n^3 + (313/45)*n^2 + (37/10)*n + 1.
%F Conjectures from _Colin Barker_, Sep 21 2018: (Start)
%F G.f.: x*(45 + 719*x + 4513*x^2 + 7676*x^3 + 4687*x^4 + 420*x^5 + 121*x^6 - 46*x^7 + 10*x^8 - x^9) / (1 - x)^10.
%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
%F (End)
%e Some solutions for n=2:
%e ..0..1..1....0..0..2....0..0..0....1..1..2....1..1..1....0..2..2....0..2..2
%e ..0..1..2....1..2..1....0..2..2....1..2..0....1..1..2....1..0..2....1..0..1
%e ..2..1..0....2..0..1....0..2..2....2..0..1....2..2..1....1..2..2....1..2..1
%Y Row 3 of A229794.
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 29 2013