login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173000
a(n) = binomial(n + 4, 4)*9^n.
8
1, 45, 1215, 25515, 459270, 7440174, 111602610, 1578379770, 21308126895, 277005649635, 3490271185401, 42835146366285, 514021756395420, 6049640671423020, 70002984912180660, 798034027998859524, 8977882814987169645, 99812932472504415465, 1097942257197548570115
OFFSET
0,2
COMMENTS
Number of n-permutations (n>=4) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly 4 u's.
LINKS
FORMULA
G.f.: 1/(1-9*x)^5. - R. J. Mathar, Dec 21 2011
a(n) = 45*a(n-1)-810*a(n-2)+7290*a(n-3)-32805*a(n-4)+59049*a(n-5). - Wesley Ivan Hurt, Apr 21 2021
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 2172 - 18432*log(9/8).
Sum_{n>=0} (-1)^n/a(n) = 36000*log(10/9) - 3792. (End)
a(n) = A000332(n+4)*A001019(n). - Michel Marcus, Aug 28 2022
MAPLE
A173000:=n->binomial(n+4, 4)*9^n: seq(A173000(n), n=0..25); # Wesley Ivan Hurt, Jul 24 2017
MATHEMATICA
Table[Binomial[n + 4, 4]*9^n, {n, 0, 20}]
PROG
(Magma) [Binomial(n+4, 4)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011
(PARI) a(n)=binomial(n+4, 4)*9^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A229796 A143400 A226981 * A004350 A199518 A075515
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 07 2010
STATUS
approved