login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173003
Antidiagonal triangle sequence based on recursion: f(n,a)=a*n*f(n-1,a)+f(n-2,a)
0
0, 0, 1, 0, 1, 2, 0, 1, 4, 7, 0, 1, 6, 25, 30, 0, 1, 8, 55, 204, 157, 0, 1, 10, 97, 666, 2065, 972, 0, 1, 12, 151, 1560, 10045, 24984, 6961, 0, 1, 14, 217, 3030, 31297, 181476, 351841, 56660, 0, 1, 16, 295, 5220, 75901, 752688, 3821041, 5654440, 516901
OFFSET
0,6
COMMENTS
Row sums are:
{0, 1, 3, 12, 62, 425, 3811, 43714, 624536, 10826503,...}.
FORMULA
f(n,a)=a*n*f(n-1,a)+f(n-2,a);
t(n,m)=antidiagonal(f(n,a))
EXAMPLE
{0},
{0, 1},
{0, 1, 2},
{0, 1, 4, 7},
{0, 1, 6, 25, 30},
{0, 1, 8, 55, 204, 157},
{0, 1, 10, 97, 666, 2065, 972},
{0, 1, 12, 151, 1560, 10045, 24984, 6961},
{0, 1, 14, 217, 3030, 31297, 181476, 351841, 56660},
{0, 1, 16, 295, 5220, 75901, 752688, 3821041, 5654440, 516901}
MATHEMATICA
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = a*n*f[n - 1, a] + f[n - 2, a];
m1 = Table[f[n, a], {n, 0, 10}, {a, 1, 11}];
Table[Table[m1[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A287318 A329020 A351640 * A378236 A335461 A294411
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 07 2010
STATUS
approved