login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294411
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -exp(k*x)*LambertW(-x).
2
0, 0, 1, 0, 1, 2, 0, 1, 4, 9, 0, 1, 6, 18, 64, 0, 1, 8, 33, 116, 625, 0, 1, 10, 54, 216, 1060, 7776, 0, 1, 12, 81, 388, 1865, 12702, 117649, 0, 1, 14, 114, 656, 3340, 21228, 187810, 2097152, 0, 1, 16, 153, 1044, 5905, 36414, 303765, 3296120, 43046721, 0, 1, 18, 198, 1576, 10100, 63480, 500374, 5222864, 66897288, 1000000000
OFFSET
0,6
FORMULA
E.g.f. of column k: -exp(k*x)*LambertW(-x).
EXAMPLE
E.g.f. of column k: A_k(x) = x/1! + 2*(k + 1)*x^2/2! + 3*(k^2 + 2*k + 3)*x^3/3! + 4*(k^3 + 3*k^2 + 9*k + 16)*x^4/4! + ...
Square array begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, ...
9, 18, 33, 54, 81, 114, ...
64, 116, 216, 388, 656, 1044, ...
625, 1060, 1895, 3340, 5905, 10100, ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[-Exp[k x] LambertW[-x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..2 give A000169, A277473, A277485.
Main diagonal gives A292633.
Cf. A290824.
Sequence in context: A173003 A378236 A335461 * A274390 A244128 A016584
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Oct 30 2017
STATUS
approved