login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294409
a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*n*x).
1
1, 1, 12, 189, 4864, 159375, 6578496, 323652399, 18572378112, 1216112914971, 89530000000000, 7319100286183983, 657910135976361984, 64494528072860946073, 6847518630093139525632, 782782183702056884765625, 95860848315529046085599232, 12520224284071636768582166787, 1737254440584625641929018966016
OFFSET
0,3
COMMENTS
a(n) is the central coefficient of (1 + n*x + n^2*x^2)^n.
LINKS
FORMULA
a(n) = [x^n] 1/sqrt((1 + n*x)*(1 - 3*n*x)).
a(n) = A000312(n)*A002426(n).
a(n) ~ sqrt(3)*3^n*n^n/(2*sqrt(Pi*n)).
MAPLE
seq(coeff((1+n*x+n^2*x^2)^n, x, n), n=0..100); # Robert Israel, Oct 30 2017
MATHEMATICA
Table[n! SeriesCoefficient[Exp[n x] BesselI[0, 2 n x], {x, 0, n}], {n, 0, 18}]
Table[CoefficientList[Series[(1 + n x + n^2 x^2)^n, {x, 0, n}], x][[-1]], {n, 0, 18}]
Table[SeriesCoefficient[1/Sqrt[(1 + n x) (1 - 3 n x)], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n^n Sum[Binomial[n, k] Binomial[k, n - k], {k, 0, n}], {n, 1, 18}]]
Join[{1}, Table[n^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4], {n, 1, 18}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 30 2017
STATUS
approved