The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098453 Expansion of 1/sqrt(1 - 4*x - 12*x^2). 5
 1, 2, 12, 56, 304, 1632, 9024, 50304, 283392, 1607168, 9167872, 52537344, 302239744, 1744412672, 10096263168, 58576306176, 340566147072, 1983765676032, 11574393962496, 67631502065664, 395710949228544, 2318088492023808, 13594307705438208, 79802741538422784, 468895276304695296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Central coefficient of (1 + 2x + 4x^2)^n. a(n) is the number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have 2 colors and the U steps can have 4 colors. - N-E. Fahssi, Mar 31 2008 a(n) is the number of 2 X n matrices with terms in {1,2,3}, same number of 1's in top and bottom rows, and no constant columns. For example, a(1)=2 counts the transposes of (2,3) and (3,2). The number of such matrices with k 1's in each row is binomial(n,2k) [choose columns containing 1's] * binomial(2k,k) [place 1's in these columns] * 2^n [place 2 or 3 in the topmost available spot in each column and the other of 2,3 in the other spot if not occupied by a 1]. - David Callan, Aug 25 2009 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi) Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5. Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. FORMULA G.f.: 1/sqrt((1+2*x)*(1-6*x)). E.g.f.: exp(2*x)*BesselI(0, 4*x). a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2*(n-k), n)*3^k. D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) + 12*(n+1)*a(n))/(n+2); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 30 2012 a(n) ~ sqrt(3)*6^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012 G.f.: G(0), where G(k) = 1 + 2*x*(1+3*x)*(4*k+1)/( 2*k+1 - x*(1+3*x)*(2*k+1)*(4*k+3)/(x*(1+3*x)*(4*k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013 a(n) = (-2)^n*hypergeom([-n,1/2], [1], 4). - Peter Luschny, Apr 26 2016 a(n) = 2^n*GegenbauerC(n, -n, -1/2)). - Peter Luschny, May 08 2016 MAPLE seq(simplify((-2)^n*hypergeom([-n, 1/2], [1], 4)), n=0..20); # Peter Luschny, Apr 26 2016 T := proc(n, k) option remember; if n < 0 or k < 0 then 0 elif n = 0 then binomial(2*k, k) else 2*(T(n-1, k+1) - T(n-1, k)) fi end: a := n -> T(n, 0): seq(a(n), n=0..20); # Peter Luschny, Aug 23 2017 MATHEMATICA Table[SeriesCoefficient[1/Sqrt[1-4*x-12*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *) PROG (PARI) x='x+O('x^66); Vec(1/sqrt(1-4*x-12*x^2)) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A000984, A084609, A084770. Sequence in context: A044047 A296944 A105487 * A256150 A180073 A363402 Adjacent sequences: A098450 A098451 A098452 * A098454 A098455 A098456 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 09:30 EDT 2024. Contains 375159 sequences. (Running on oeis4.)