|
|
A098456
|
|
Expansion of 1/sqrt(1-4x-64x^2).
|
|
1
|
|
|
1, 2, 38, 212, 2566, 20092, 210524, 1884136, 18854854, 178415852, 1764019828, 17115907096, 169100140444, 1661540282456, 16458178007288, 162887627833552, 1618680238292294, 16095872154638156, 160435286115927044
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Define Q(n,x)=sum{k=0..floor(n/2), binomial(n,k)binomial(2(n-k),n)x^(n-2k)}. Then a(n)=4^n*Q(n,1/4). Central coefficients of (1+2x+17x^2)^n.
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(2x)*BesselI(0, 2*sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*16^k.
D-finite with recurrence: n*a(n) +2*(1-2*n)*a(n-1) +64*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(578+34*sqrt(17))*(2+2*sqrt(17))^n/(34*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
|
|
MATHEMATICA
|
CoefficientList[Series[1/Sqrt[1-4x-64x^2], {x, 0, 30}], x] (* Harvey P. Dale, Dec 27 2011 *)
|
|
PROG
|
(PARI) x='x+O('x^66); Vec(1/sqrt(1-4*x-64*x^2)) \\ Joerg Arndt, May 11 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|