login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098455 Expansion of 1/sqrt(1-4x-36x^2). 2
1, 2, 24, 128, 1096, 7632, 60864, 461568, 3648096, 28551872, 226695424, 1799989248, 14380907776, 115126211072, 924791445504, 7444100947968, 60057602459136, 485388465196032, 3929580292706304, 31858982479331328 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Define Q(n,x)=sum{k=0..floor(n/2), binomial(n,k)binomial(2(n-k),n)x^(n-2k)}. Then a(n)=3^n*Q(n,1/3). A084770(n) is 2^n*Q(n,1/2). Central coefficient of (1+2x+10x^2)^n.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

FORMULA

E.g.f.: exp(2x)*BesselI(0, 2*sqrt(10)*x).

a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*9^k.

D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 36*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012

a(n) ~ sqrt(50+5*sqrt(10))*(2+2*sqrt(10))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012

MATHEMATICA

Table[SeriesCoefficient[1/Sqrt[1-4*x-36*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

PROG

(PARI) x='x+O('x^66); Vec(1/sqrt(1-4*x-36*x^2)) \\ Joerg Arndt, May 11 2013

CROSSREFS

Sequence in context: A034310 A060817 A045820 * A261475 A078994 A290775

Adjacent sequences:  A098452 A098453 A098454 * A098456 A098457 A098458

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 09:39 EST 2022. Contains 350476 sequences. (Running on oeis4.)