login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098454 Limit of the power tower defined as follows: 2^(1/2); (2^(1/2))^(3^(1/3)); (2^(1/2))^((3^(1/3))^(4^(1/4))); etc. 5
1, 9, 4, 1, 4, 6, 1, 1, 2, 3, 5, 8, 2, 0, 7, 1, 6, 9, 1, 5, 1, 4, 9, 4, 8, 3, 7, 8, 1, 9, 8, 1, 2, 6, 2, 0, 4, 3, 6, 2, 9, 6, 8, 9, 2, 0, 6, 7, 8, 3, 1, 6, 6, 4, 6, 3, 0, 0, 8, 3, 9, 6, 5, 6, 2, 9, 9, 1, 4, 6, 9, 1, 9, 3, 1, 7, 4, 1, 9, 9, 1, 6, 2, 2, 8, 5, 0, 6, 0, 6, 3, 3, 0, 1, 7, 2, 5, 8, 5, 4, 0, 8, 4, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

FORMULA

Let b(n)=n^(1/n). Let m=1, initially. For values of k from n to 2 in steps of -1, calculate m -> b(k)^m. This leads to the approximation of the constant starting at n^(1/n). The constant is the limit as n -> infinity.

EXAMPLE

1.941461123582071691514948378198126204362968920678316646300839656299146919...

MAPLE

a:=array(2..150): a[2]:=2^(1/2): for n from 3 to 150 do: m:=1: for p from n to 2 by -1 do: m:=(p^(1/p))^m: od: a[n]:=m: od: evalf(a[150], 100);

MATHEMATICA

f[n_] := Block[{k = n, e = 1}, While[k > 1, e = N[(k^(1/k))^e, 128]; k-- ]; e]; RealDigits[ f[105], 10, 105][[1]] (* Robert G. Wilson v, Sep 10 2004 *)

CROSSREFS

Sequence in context: A010158 A286229 A242611 * A298531 A154206 A094881

Adjacent sequences:  A098451 A098452 A098453 * A098455 A098456 A098457

KEYWORD

cons,easy,nonn

AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 08 2004

EXTENSIONS

More terms from Robert G. Wilson v, Sep 10 2004

Offset corrected by R. J. Mathar, Feb 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 17:55 EDT 2018. Contains 313834 sequences. (Running on oeis4.)