login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098457 Farey Bisection Expansion of sqrt(7). 2
1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
We define the Farey Bisection Expansion (FBE) of the nonnegative real number x to be the sequence {a(n)} of 0's and 1's determined as follows. Set na(0)=0, da(0)=1, nb(0)=1 and db(0)=0. For n=1, 2, 3,..., set num=na(n-1)+nb(n-1) and den=da(n-1)+db(n-1); if x<n/b, set a(n)=0, na(n)=na(n-1), da(n)=da(n-1), nb(n)=num, db(n)=den, else set a(n)=1, na(n)=num, da(n)=den, nb(n)=nb(n-1), db(n)=db(n-1). (The process is akin to that of locating the zero of a function by the bisection method, simply recording which successive subinterval, the left or the right, the zero lies at each refinement.) The FBE of Sqrt[7] is periodic with period 7. The RUNS transform of FBE(x) is the sequence of partial quotients of the continued fraction of x. As can be seen, RUNS(FBE(Sqrt[7]))={2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1,...}, which is A010121.
LINKS
FORMULA
From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: x * (1 + x + x^3 + x^5 + x^6) / (1 - x^7).
a(n) = a(n-7) for n>7.
a(n) = 1 - Sum_{k=1..4} floor((n + k)/7)*(-1)^k. (End)
a(n+1) = (-1)^(mod(mod(n, 7), 3)>0) * A131372(n). - Michael Somos, Dec 26 2016
EXAMPLE
G.f. = x + x^2 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^13 + x^14 + x^15 + ...
MAPLE
seq(op([1, 1, 0, 1, 0, 1, 1]), n=0..20); # Wesley Ivan Hurt, Jul 11 2016
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 1, 0, 1, 1}, 105] (* Ray Chandler, Aug 26 2015 *)
PROG
(Magma) &cat [[1, 1, 0, 1, 0, 1, 1]^^20]; // Wesley Ivan Hurt, Jul 11 2016
(PARI) {a(n) = [1, 1, 0, 1, 0, 1, 1][(n-1)%7+1]}; /* Michael Somos, Dec 26 2016 */
CROSSREFS
Sequence in context: A267579 A285414 A131372 * A284793 A260397 A137161
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Sep 08 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 03:51 EDT 2024. Contains 375995 sequences. (Running on oeis4.)