login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098460
Expansion of e.g.f. 1/sqrt(1-2x-2x^2).
1
1, 1, 5, 33, 321, 3945, 59445, 1056825, 21677985, 503799345, 13084021125, 375524312625, 11803392302625, 403235809601625, 14876913457531125, 589498927632239625, 24969077812488434625, 1125803018759825030625
OFFSET
0,3
FORMULA
a(n) = (n!/2^n)*A084609(n);
a(n) = (n!/2^n) * Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),n)*2^k;
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),n)*2^(k-n).
D-finite with recurrence: a(n) +(1-2*n)*a(n-1) -2*(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) ~ 2^(n+1/2)*n^n/(sqrt(3-sqrt(3))*exp(n)*(sqrt(3)-1)^n). - Vaclav Kotesovec, Jun 26 2013
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-2*x-2*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(1/sqrt(1-2*x-2*x^2))) \\ Michel Marcus, May 10 2020
CROSSREFS
Cf. A012244.
Sequence in context: A001828 A084845 A198079 * A087618 A322178 A134152
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 08 2004
STATUS
approved