Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 May 10 2020 19:33:50
%S 1,1,5,33,321,3945,59445,1056825,21677985,503799345,13084021125,
%T 375524312625,11803392302625,403235809601625,14876913457531125,
%U 589498927632239625,24969077812488434625,1125803018759825030625
%N Expansion of e.g.f. 1/sqrt(1-2x-2x^2).
%F a(n) = (n!/2^n)*A084609(n);
%F a(n) = (n!/2^n) * Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),n)*2^k;
%F a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),n)*2^(k-n).
%F D-finite with recurrence: a(n) +(1-2*n)*a(n-1) -2*(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Nov 15 2011
%F a(n) ~ 2^(n+1/2)*n^n/(sqrt(3-sqrt(3))*exp(n)*(sqrt(3)-1)^n). - _Vaclav Kotesovec_, Jun 26 2013
%t CoefficientList[Series[1/Sqrt[1-2*x-2*x^2], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 26 2013 *)
%o (PARI) my(x='x+O('x^25)); Vec(serlaplace(1/sqrt(1-2*x-2*x^2))) \\ _Michel Marcus_, May 10 2020
%Y Cf. A012244.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Sep 08 2004