The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084845 Numerators of the continued fraction n+1/(n+1/...) [n times]. 9
 1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The n-th term of the Lucas sequence U(n,-1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..386 Eric Weisstein's World of Mathematics, Lucas Sequence FORMULA a(n) = Sum_{k=0..floor(n/2)}* binomial(n-k, k)*n^(n-2k). - Michel Lagneau a(n) = [x^n] 1/(1 - n*x - x^2). - Paul D. Hanna, Dec 27 2012 a(n) = (s^(n+1) - (-s)^(-n-1))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016 a(n) = A117715(n+1,n). - Alois P. Heinz, Aug 12 2017 EXAMPLE a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72. MAPLE with(combinat, fibonacci):seq(fibonacci(i+1, i), i=1..17); # Zerinvary Lajos, Dec 01 2006 MATHEMATICA myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}] Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *) PROG (PARI) {a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012 (Python) from sympy import fibonacci def a117715(n, m): return 0 if n==0 else fibonacci(n, m) def a(n): return a117715(n + 1, n) print map(a, range(1, 31)) # Indranil Ghosh, Aug 12 2017 CROSSREFS Cf. A084844 (denominators). Cf. A097690, A097691, A117715. Sequence in context: A291846 A255927 A001828 * A198079 A098460 A087618 Adjacent sequences:  A084842 A084843 A084844 * A084846 A084847 A084848 KEYWORD frac,nonn AUTHOR Hollie L. Buchanan II, Jun 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 12:45 EDT 2020. Contains 333305 sequences. (Running on oeis4.)