login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084845
Numerators of the continued fraction n+1/(n+1/...) [n times].
15
1, 5, 33, 305, 3640, 53353, 927843, 18674305, 426938895, 10928351501, 309601751184, 9616792908241, 324971855514293, 11868363584907985, 465823816409224245, 19553538801258341377, 874091571490181406680
OFFSET
1,2
COMMENTS
The n-th term of the Lucas sequence U(n,-1). The denominator is the (n-1)-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004
LINKS
Eric Weisstein's World of Mathematics, Lucas Sequence
FORMULA
a(n) = Sum_{k=0..floor(n/2)}* binomial(n-k, k)*n^(n-2k). - Michel Lagneau
a(n) = [x^n] 1/(1 - n*x - x^2). - Paul D. Hanna, Dec 27 2012
a(n) = (s^(n+1) - (-s)^(-n-1))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = A117715(n+1,n). - Alois P. Heinz, Aug 12 2017
EXAMPLE
a(4) = 305 since 4+1/(4+1/(4+1/4)) = 305/72.
MAPLE
A084845 := proc(n)
fibonacci(n+1, n) ;
end proc:
seq(A084845(n), n=1..20) ; # Zerinvary Lajos, Dec 01 2006
MATHEMATICA
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Numerator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Numerator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
PROG
(PARI) {a(n)=polcoeff(1/(1-n*x-x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
(Python)
from sympy import fibonacci
def a117715(n, m): return 0 if n==0 else fibonacci(n, m)
def a(n): return a117715(n + 1, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
CROSSREFS
Cf. A084844 (denominators).
Sequence in context: A291846 A255927 A001828 * A198079 A098460 A087618
KEYWORD
frac,nonn
AUTHOR
STATUS
approved