OFFSET
0,1
COMMENTS
This is a basic member of a family of 4-periodic multiplicative sequences with two parameters (c1,c2), defined for n >= 1 by a(n)=1 if n is odd, a(n)=c1 if n == 0 (mod 4) and a(n)=c2 if n == 2 (mod 4). Here, (c1,c2)=(4,1).
The Dirichlet generating function is (1+(c2-1)/2^s+(c1-c2)/4^s)*zeta(s).
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
C. Elsner, Series of Error Terms for Rational Approximations of Irrational Numbers , J. Int. Seq. 14 (2011) # 11.1.4, example 5.
G. Xiao, Contfrac
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
FORMULA
From R. J. Mathar, Jun 17 2009: (Start)
G.f.: -(2*x^2+3*x+2)*(x^2-x+1)/((x-1)*(1+x)*(x^2+1)).
a(n) = a(n-4), n > 4. (End)
a(n) = (7 + 3*(-1)^n + 3*(-i)^n + 3*i^n)/4, n > 0, where i is the imaginary unit. - Bruno Berselli, Feb 18 2011
EXAMPLE
2.645751311064590590501615753... = A010465 = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...)))).
MATHEMATICA
ContinuedFraction[Sqrt[7], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
CoefficientList[Series[(2 x^2 + 3 x + 2) (x^2 - x + 1) / ((1 - x) (1 + x) (x^2 + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 26 2016 *)
PadRight[{2}, 120, {4, 1, 1, 1}] (* Harvey P. Dale, Nov 30 2019 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(7)); for (n=0, 20000, write("b010121.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009
CROSSREFS
KEYWORD
nonn,cofr,easy,mult
AUTHOR
STATUS
approved