login
A010121
Continued fraction for sqrt(7).
15
2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4
OFFSET
0,1
COMMENTS
This is a basic member of a family of 4-periodic multiplicative sequences with two parameters (c1,c2), defined for n >= 1 by a(n)=1 if n is odd, a(n)=c1 if n == 0 (mod 4) and a(n)=c2 if n == 2 (mod 4). Here, (c1,c2)=(4,1).
The Dirichlet generating function is (1+(c2-1)/2^s+(c1-c2)/4^s)*zeta(s).
Other members are A010123 with parameters (6,2), A010127 (8,3), A010130 (10,1), A010131 (10,2), A010132 (10,4), A010137 (12,5), A010146 (14,6), A089146 (4,8), A109008 (4,2), A112132 (7,3). If c1=c2, this reduces to the cases discussed in A040001. - R. J. Mathar, Feb 18 2011
FORMULA
From R. J. Mathar, Jun 17 2009: (Start)
G.f.: -(2*x^2+3*x+2)*(x^2-x+1)/((x-1)*(1+x)*(x^2+1)).
a(n) = a(n-4), n > 4. (End)
a(n) = (7 + 3*(-1)^n + 3*(-i)^n + 3*i^n)/4, n > 0, where i is the imaginary unit. - Bruno Berselli, Feb 18 2011
EXAMPLE
2.645751311064590590501615753... = A010465 = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...)))).
MATHEMATICA
ContinuedFraction[Sqrt[7], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
CoefficientList[Series[(2 x^2 + 3 x + 2) (x^2 - x + 1) / ((1 - x) (1 + x) (x^2 + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 26 2016 *)
PadRight[{2}, 120, {4, 1, 1, 1}] (* Harvey P. Dale, Nov 30 2019 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(7)); for (n=0, 20000, write("b010121.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009
CROSSREFS
Cf. A010465 (decimal expansion).
Sequence in context: A352894 A122374 A261960 * A174726 A300239 A354364
KEYWORD
nonn,cofr,easy,mult
STATUS
approved