login
A010122
Continued fraction for sqrt(13).
9
3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6
OFFSET
0,1
COMMENTS
Eventual period is (1, 1, 1, 1, 6). - Zak Seidov, Mar 05 2011
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 96 at p. 264.
FORMULA
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(5^e) = 6, and a(p^e) = 1 for p != 5.
Dirichlet g.f.: zeta(s) * (1 + 1/5^(s-1)). (End)
G.f.: (3 + x + x^2 + x^3 + x^4 + 3*x^5)/(1 - x^5). - Stefano Spezia, Aug 17 2024
EXAMPLE
3.605551275463989293119221267... = 3 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - Harry J. Smith, Jun 02 2009
MATHEMATICA
ContinuedFraction[Sqrt[13], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(13)); for (n=0, 20000, write("b010122.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009
CROSSREFS
Cf. A010470 (decimal expansion).
Sequence in context: A140750 A028264 A208673 * A220693 A208615 A058663
KEYWORD
nonn,cofr,easy,mult
STATUS
approved