login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261960
Number A(n,k) of compositions of n such that no part equals any of its k immediate predecessors; square array A(n,k), n>=0, k>=0, read by antidiagonals.
6
1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 8, 1, 1, 1, 3, 4, 16, 1, 1, 1, 3, 3, 7, 32, 1, 1, 1, 3, 3, 5, 14, 64, 1, 1, 1, 3, 3, 5, 11, 23, 128, 1, 1, 1, 3, 3, 5, 11, 15, 39, 256, 1, 1, 1, 3, 3, 5, 11, 13, 23, 71, 512, 1, 1, 1, 3, 3, 5, 11, 13, 19, 37, 124, 1024
OFFSET
0,6
LINKS
EXAMPLE
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 1, 1, 1, 1, 1, 1, ...
: 4, 3, 3, 3, 3, 3, 3, ...
: 8, 4, 3, 3, 3, 3, 3, ...
: 16, 7, 5, 5, 5, 5, 5, ...
: 32, 14, 11, 11, 11, 11, 11, ...
MAPLE
b:= proc(n, l) option remember;
`if`(n=0, 1, add(`if`(j in l, 0, b(n-j,
`if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
end:
A:= (n, k)-> b(n, [0$min(n, k)]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A011782, A003242, A261962.
Main diagonal gives A032020.
Sequence in context: A345000 A352894 A122374 * A010121 A174726 A300239
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 06 2015
STATUS
approved