login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261962
Number of compositions of n such that no part equals any of its two immediate predecessors.
9
1, 1, 1, 3, 3, 5, 11, 15, 23, 37, 67, 101, 165, 265, 419, 691, 1123, 1789, 2909, 4657, 7515, 12183, 19657, 31635, 51101, 82449, 132989, 214623, 346485, 558587, 901399, 1454949, 2347157, 3787197, 6111131, 9858931, 15908393, 25669125, 41416849, 66826277
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.61350953985228953675390530863679475666564394885974..., c = 0.5270561325668460003703909484716134447490733801644227... - Vaclav Kotesovec, Sep 21 2019
MAPLE
b:= proc(n, i, j) option remember; `if`(n=0, 1, add(
`if`(k=i or k=j, 0, (t-> b(t, `if`(k>t, 0, k),
`if`(i>t, 0, i)))(n-k)), k=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[If[k == i || k == j, 0, Function[t, b[t, If[k>t, 0, k], If[i>t, 0, i]]][n - k]], {k, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A261960.
Cf. A261961.
Sequence in context: A279790 A338847 A032020 * A301500 A084656 A073749
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 06 2015
STATUS
approved