login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345000
a(n) = gcd(A003415(n), A003415(A276086(n))), where A003415(n) is the arithmetic derivative of n, and A276086(n) gives the prime product form of primorial base expansion of n.
20
0, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16, 1, 3, 1, 2, 5, 1, 1, 4, 5, 5, 1, 2, 1, 1, 1, 10, 1, 1, 3, 12, 1, 1, 1, 2, 1, 1, 1, 4, 1, 5, 1, 2, 1, 5, 5, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 12, 3, 1, 1, 2, 1, 1, 1, 12, 1, 1, 55, 10, 3, 1, 1, 16, 1, 1, 1, 2, 1, 5, 1, 140, 1, 3, 1, 16, 1, 49, 3, 2, 1, 7, 1, 28, 1, 7, 1, 2, 1
OFFSET
0,5
FORMULA
a(n) = gcd(A003415(n), A327860(n)) = gcd(A003415(n), A003415(A276086(n))).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A345000(n) = gcd(A003415(n), A003415(A276086(n)));
CROSSREFS
Cf. A003415, A276086, A327860, A347958 (inverse Möbius transform), A347959, A351083, A351085, A351086, A351235, A351236.
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860).
Cf. also A324198, A327858.
Sequence in context: A343370 A160467 A353573 * A352894 A122374 A261960
KEYWORD
nonn,base,easy,look
AUTHOR
Antti Karttunen, Jul 21 2021
STATUS
approved