OFFSET
1,2
COMMENTS
From Antti Karttunen, Jan 30 2022: (Start)
In addition to 2's that occur on primes, there are also other duplicates, for example, a(39) = a(55) = 544, a(51) = a(91) = 840, a(65) = a(77) = 684, a(343) = a(6241) = 318, a(95) = a(119) = a(143) = 1200 and a(155) = a(203) = a(299) = a(323) = 2664. Note how, apart from 343 = 7^3 and 6241 = 79^2, the duplicate positions in above cases are all squarefree semiprimes, and how the sum of the two prime factors in those cases are equal. E.g. 95 = 5*19, 119 = 7*17, 143 = 11*13, with 5+19 = 7+17 = 11+13 = 24.
Indeed, for squarefree semiprimes pq, A342001(pq) = A003415(pq) = p+q and A344753(pq) = 2*A001065(pq) = 2*(1+p+q), and therefore the product A342001(pq) * A344753(pq) depends only on the sum of p+q.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
MATHEMATICA
A003415[n_] := If[n<2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
A003557[n_] := n*Times@@(1/FactorInteger[n][[All, 1]]);
A344753[n_] := Sum[d+If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
Array[a, 70] (* Jean-François Alcover, Jun 12 2021 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2021
STATUS
approved