login
A344998
a(n) = A342001(n) * A344753(n).
6
0, 2, 2, 10, 2, 60, 2, 33, 14, 112, 2, 224, 2, 180, 144, 92, 2, 273, 2, 456, 220, 364, 2, 660, 22, 480, 66, 768, 2, 2604, 2, 235, 420, 760, 312, 910, 2, 924, 544, 1394, 2, 4428, 2, 1632, 780, 1300, 2, 1736, 30, 747, 840, 2184, 2, 1080, 544, 2392, 1012, 1984, 2, 8832, 2, 2244, 1258, 570, 684, 9516, 2, 3528, 1404, 8732
OFFSET
1,2
COMMENTS
From Antti Karttunen, Jan 30 2022: (Start)
In addition to 2's that occur on primes, there are also other duplicates, for example, a(39) = a(55) = 544, a(51) = a(91) = 840, a(65) = a(77) = 684, a(343) = a(6241) = 318, a(95) = a(119) = a(143) = 1200 and a(155) = a(203) = a(299) = a(323) = 2664. Note how, apart from 343 = 7^3 and 6241 = 79^2, the duplicate positions in above cases are all squarefree semiprimes, and how the sum of the two prime factors in those cases are equal. E.g. 95 = 5*19, 119 = 7*17, 143 = 11*13, with 5+19 = 7+17 = 11+13 = 24.
Indeed, for squarefree semiprimes pq, A342001(pq) = A003415(pq) = p+q and A344753(pq) = 2*A001065(pq) = 2*(1+p+q), and therefore the product A342001(pq) * A344753(pq) depends only on the sum of p+q.
(End)
LINKS
FORMULA
a(n) = A342001(n) * A344753(n).
a(n) = A344999(n) + A345043(n).
MATHEMATICA
A003415[n_] := If[n<2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
A003557[n_] := n*Times@@(1/FactorInteger[n][[All, 1]]);
A342001[n_] := A003415[n]/A003557[n];
A344753[n_] := Sum[d+If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
a[n_] := A342001[n]*A344753[n];
Array[a, 70] (* Jean-François Alcover, Jun 12 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
A344753(n) = sumdiv(n, d, (d<n)*(d+(issquarefree(n/d) * d)));
A344998(n) = (A342001(n) * A344753(n));
CROSSREFS
Cf. A345003 [gives k for which a(k) = A344999(k)], A345004, A345005.
Sequence in context: A319880 A133631 A137450 * A321415 A319692 A308693
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2021
STATUS
approved