login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344753
a(n) = sigma(n) + psi(n) - 2n = Sum_{d|n, d<n} d+(mu(n/d)^2 * d), where mu is Möbius mu-function.
11
0, 2, 2, 5, 2, 12, 2, 11, 7, 16, 2, 28, 2, 20, 18, 23, 2, 39, 2, 38, 22, 28, 2, 60, 11, 32, 22, 48, 2, 84, 2, 47, 30, 40, 26, 91, 2, 44, 34, 82, 2, 108, 2, 68, 60, 52, 2, 124, 15, 83, 42, 78, 2, 120, 34, 104, 46, 64, 2, 192, 2, 68, 74, 95, 38, 156, 2, 98, 54, 148, 2, 195, 2, 80, 94, 108, 38, 180, 2, 170, 67, 88, 2
OFFSET
1,2
COMMENTS
Sigma is the sum of divisors (A000203), and psi is Dedekind psi-function (A001615). Coincides with the latter only on perfect numbers (A000396).
FORMULA
a(n) = Sum_{d|n, d<n} d+(A008966(n/d) * d).
a(n) = A001065(n) + A306927(n).
a(n) = A001615(n) - A033879(n).
a(n) = A344705(n) + 2*A001065(n) - n.
For squarefree n, a(n) = 2*A001065(n).
a(n) = A344997(n) / A173557(n) = A344998(n) / A342001(n). - Antti Karttunen, Jun 06 2021
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = Pi^2/6 + 15/Pi^2 - 2 = 1.164751... . - Amiram Eldar, Dec 08 2023
MATHEMATICA
a[n_] := Sum[d + If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
PROG
(PARI) A344753(n) = sumdiv(n, d, (d<n)*(d+(issquarefree(n/d) * d)));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, May 28 2021
EXTENSIONS
New primary definition added by Antti Karttunen, Jun 06 2021
STATUS
approved