login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051709
a(n) = sigma(n) + phi(n) - 2n.
17
0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 7, 0, 9, 0, 10, 2, 2, 0, 20, 1, 2, 4, 12, 0, 20, 0, 15, 2, 2, 2, 31, 0, 2, 2, 26, 0, 24, 0, 16, 12, 2, 0, 44, 1, 13, 2, 18, 0, 30, 2, 32, 2, 2, 0, 64, 0, 2, 14, 31, 2, 32, 0, 22, 2, 28, 0, 75, 0, 2, 14, 24, 2, 36, 0
OFFSET
1,6
COMMENTS
Sigma is the sum of divisors (A000203), and phi is the Euler totient function (A000010). - Michael B. Porter, Jul 05 2013
Because sigma and phi are multiplicative functions, it is easy to show that (1) if a(n)=0, then n is prime or 1 and (2) if a(n)=2, then n is the product of two distinct prime numbers. Note that a(n) is the n-th term of the Dirichlet series whose generating function is given below. Using the generating function, it is theoretically possible to compute a(n). Hence a(n)=0 could be used as a primality test and a(n)=2 could be used as a test for membership in P2 (A006881). - T. D. Noe, Aug 01 2002
It appears that a(n) - A002033(n) = zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)) + 1/(zeta(s)-2). - Eric Desbiaux, Jul 04 2013
a(n) = 1 if and only if n = prime(k)^2 (n is in A001248). It seems that a(n) = k has only finitely many solutions for k >= 3. - Jianing Song, Jun 27 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (First 1000 terms from T. D. Noe.)
Carlos Rivera, Puzzle 76. z(n)=sigma(n) + phi(n) - 2n, The Prime Puzzles and Problems Connection.
FORMULA
Dirichlet g.f.: zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)). - T. D. Noe, Aug 01 2002
From Antti Karttunen, Mar 02 2018: (Start)
a(n) = A001065(n) - A051953(n). [Difference between the sum of proper divisors of n and their Moebius-transform.]
a(n) = -Sum_{d|n, d<n} A008683(n/d)*A001065(d). (End)
Sum_{k=1..n} a(k) = (3/(Pi^2) + Pi^2/12 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 03 2023
EXAMPLE
a(5) = sigma(5) + phi(5) - 2*5 = 6 + 4 - 10 = 0.
MATHEMATICA
Table[DivisorSigma[1, n]+EulerPhi[n]-2n, {n, 80}] (* Harvey P. Dale, Apr 08 2015 *)
PROG
(PARI) a(n)=sigma(n)+eulerphi(n)-2*n \\ Charles R Greathouse IV, Jul 05 2013
(PARI) A051709(n) = -sumdiv(n, d, (d<n)*moebius(n/d)*(sigma(d)-d)); \\ Antti Karttunen, Mar 02 2018
CROSSREFS
Cf. A278373 (range of this sequence), A056996 (numbers not present).
Cf. also A344753, A345001 (analogous sequences).
Sequence in context: A197117 A343879 A275387 * A318326 A329646 A293813
KEYWORD
nonn
STATUS
approved