login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228498
a(n) = sigma(n^2) + phi(n^2) - 2n^2.
2
0, 1, 1, 7, 1, 31, 1, 31, 13, 57, 1, 163, 1, 91, 73, 127, 1, 307, 1, 321, 111, 183, 1, 691, 31, 241, 121, 535, 1, 1261, 1, 511, 211, 381, 157, 1591, 1, 463, 273, 1377, 1, 2163, 1, 1131, 781, 651, 1, 2803, 57, 1467, 421, 1513, 1, 2791, 273, 2311, 507, 993, 1, 6253, 1, 1123, 1227, 2047, 343, 4711, 1, 2445, 703
OFFSET
1,4
COMMENTS
If n is a prime, p, then a(p) = 1. Proof: a(p) = sigma(p^2) + phi(p^2) - 2p^2 = p^2 + p + 1 + p^2*( 1-(1/p) ) - 2p^2 = p^2 + p + 1 + p^2 - p - 2p^2 = 1.
LINKS
FORMULA
a(n) = A051709(n^2).
a(n) = A000203(n^2) + A000010(n^2) - 2*n^2.
a(n) = A065764(n) + A002618(n) - A001105(n).
Sum_{k=1..n} a(k) ~ ((5*zeta(3) + 2)/ Pi^2 - 2/3) * n^3. - Amiram Eldar, Dec 03 2023
EXAMPLE
a(6) = 31; sigma(6^2) + phi(6^2) - 2*6^2 = 91 + 12 - 72 = 31.
MAPLE
with(numtheory); seq(sigma(k^2) + phi(k^2) - 2*k^2, k=1..20);
MATHEMATICA
Table[DivisorSigma[1, n^2] + EulerPhi[n^2] - 2*n^2, {n, 100}]
PROG
(PARI) vector(100, n, sigma(n^2)+eulerphi(n^2)-2*n^2) \\ Altug Alkan, Oct 28 2015
CROSSREFS
Cf. A051709 (sequence at n instead of n^2).
Sequence in context: A083994 A301731 A379007 * A084181 A002678 A147482
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 23 2013
EXTENSIONS
More terms from Antti Karttunen, Oct 30 2017
STATUS
approved