login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228498 a(n) = sigma(n^2) + phi(n^2) - 2n^2. 1
0, 1, 1, 7, 1, 31, 1, 31, 13, 57, 1, 163, 1, 91, 73, 127, 1, 307, 1, 321, 111, 183, 1, 691, 31, 241, 121, 535, 1, 1261, 1, 511, 211, 381, 157, 1591, 1, 463, 273, 1377, 1, 2163, 1, 1131, 781, 651, 1, 2803, 57, 1467, 421, 1513, 1, 2791, 273, 2311, 507, 993, 1, 6253, 1, 1123, 1227, 2047, 343, 4711, 1, 2445, 703 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

If n is a prime, p, then a(p) = 1. Proof: a(p) = sigma(p^2) + phi(p^2) - 2p^2 = p^2 + p + 1 + p^2*( 1-(1/p) ) - 2p^2 = p^2 + p + 1 + p^2 - p - 2p^2 = 1.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

FORMULA

a(n) = A051709(n^2).

a(n) = A000203(n^2) + A000010(n^2) - 2*n^2.

a(n) = A065764(n) + A002618(n) - A001105(n).

EXAMPLE

a(6) = 31; sigma(6^2) + phi(6^2) - 2*6^2 = 91 + 12 - 72 = 31.

MAPLE

with(numtheory); seq(sigma(k^2) + phi(k^2) - 2*k^2, k=1..20);

MATHEMATICA

Table[DivisorSigma[1, n^2] + EulerPhi[n^2] - 2*n^2, {n, 100}]

PROG

(PARI) vector(100, n, sigma(n^2)+eulerphi(n^2)-2*n^2) \\ Altug Alkan, Oct 28 2015

CROSSREFS

Cf. A051709 (sequence at n instead of n^2).

Cf. A000010, A000203, A001105, A002618, A065764.

Sequence in context: A286895 A083994 A301731 * A084181 A002678 A147482

Adjacent sequences:  A228495 A228496 A228497 * A228499 A228500 A228501

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Aug 23 2013

EXTENSIONS

More terms from Antti Karttunen, Oct 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 14:39 EST 2021. Contains 341632 sequences. (Running on oeis4.)