login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297159
a(n) = 3*n - 2*phi(n) - sigma(n); Difference between the deficiency of n and its Moebius-transform.
7
0, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 1, 6, 5, 1, 1, 3, 1, 2, 7, 10, 1, -4, 4, 12, 5, 4, 1, 2, 1, 1, 11, 16, 9, -7, 1, 18, 13, -2, 1, 6, 1, 8, 9, 22, 1, -12, 6, 17, 17, 10, 1, 6, 13, 0, 19, 28, 1, -20, 1, 30, 13, 1, 15, 14, 1, 14, 23, 18, 1, -27, 1, 36, 21, 16, 15, 18, 1, -10, 14, 40, 1, -20, 19, 42, 29, 4, 1, -12, 17, 20, 31, 46, 21, -28, 1, 39, 21, 3, 1, 26
OFFSET
1,6
LINKS
FORMULA
a(n) = A033879(n) - A083254(n) = 3*n - 2*A000010(n) - A000203(n).
a(n) = -Sum_{d|n, d<n} A008683(n/d)*A033879(d).
Sum_{k=1..n} a(k) = (3/2 - 6/Pi^2 - Pi^2/12) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 04 2023
MATHEMATICA
a[n_] := 3*n - 2*EulerPhi[n] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
PROG
(PARI) A297159(n) = (3*n - 2*eulerphi(n) - sigma(n));
(PARI) A297159(n) = -sumdiv(n, d, (d<n)*moebius(n/d)*((2*d)-sigma(d)));
(Python)
from sympy import totient, divisor_sigma
def a(n): return 3*n-2*totient(n)-divisor_sigma(n)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 02 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Antti Karttunen, Mar 02 2018
STATUS
approved