OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
FORMULA
a(n) = Sum_{d|n, d<n} A033879(d).
Sum_{k=1..n} a(k) ~ (Pi^2/4 - Pi^4/72 - 1) * n^2. - Amiram Eldar, Dec 04 2023
EXAMPLE
For n = 6, whose proper divisors are 1, 2, 3, their deficiencies are 1, 1, 2, thus a(6) = 1+1+2 = 4.
For n = 12, whose proper divisors are 1, 2, 3, 4, 6, their deficiencies are 1, 1, 2, 1, 0, thus a(12) = 1+1+2+1+0 = 5.
MATHEMATICA
f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 0; a[n_] := Module[{f = FactorInteger[n]}, 3 * Times @@ f1 @@@ f - Times @@ f2 @@@ f - 2*n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Antti Karttunen, Dec 04 2017
STATUS
approved