login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296072
a(n) = Product_{d|n, d<n} A019565(A289814(A295882(d))); a product obtained from the -1's present in balanced ternary representation of the deficiencies of the proper divisors of n.
4
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 12, 1, 2, 6, 1, 1, 12, 1, 1, 12, 3, 1, 12, 1, 1, 2, 15, 3, 216, 1, 5, 2, 6, 1, 6, 1, 2, 36, 5, 1, 180, 3, 10, 30, 1, 1, 1080, 1, 3, 10, 1, 1, 3240, 1, 1, 36, 1, 1, 20, 1, 450, 10, 30, 1, 45360, 1, 1, 30, 75, 3, 10, 1, 60, 360, 1, 1, 540, 15, 105, 2, 2, 1, 3240, 3, 50, 2, 35, 5, 2520, 1, 630, 60, 90, 1, 900
OFFSET
1,6
COMMENTS
Used as a part of filter A296073.
LINKS
FORMULA
a(n) = Product_{d|n, d<n} A019565(A289814(A295882(d))).
PROG
(PARI)
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A117967(n) = if(n<=1, n, if(!(n%3), 3*A117967(n/3), if(1==(n%3), 1+3*A117967((n-1)/3), 2+3*A117967((n+1)/3))));
A117968(n) = if(1==n, 2, if(!(n%3), 3*A117968(n/3), if(1==(n%3), 2+3*A117968((n-1)/3), 1+3*A117968((n+1)/3))));
A289814(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From Rémy Sigrist
A295882(n) = { my(x = (2*n)-sigma(n)); if(x >= 0, A117967(x), A117968(-x)); };
A296072(n) = { my(m=1); fordiv(n, d, if(d < n, m *= A019565(A289814(A295882(d))))); m; };
(Scheme)
(define (A296072 n) (let loop ((m 1) (props (proper-divisors n))) (cond ((null? props) m) (else (loop (* m (A019565 (A289814 (A295882 (car props))))) (cdr props))))))
(define (proper-divisors n) (reverse (cdr (reverse (divisors n)))))
(define (divisors n) (let loop ((k n) (divs (list))) (cond ((zero? k) divs) ((zero? (modulo n k)) (loop (- k 1) (cons k divs))) (else (loop (- k 1) divs)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 04 2017
STATUS
approved