The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033879 Deficiency of n, or 2n - (sum of divisors of n). 156
 1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007 a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014 If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019 It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020 REFERENCES Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84. LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..25000 [First 2000 terms from T. D. Noe, terms up to 16384 from Antti Karttunen] Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493. Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1610.01868 [math.NT], 2016. Jose Arnaldo B. Dris, Analysis of the Ratio D(n)/n, arXiv:1703.09077 [math.NT], 2017. Jose Arnaldo Bebita Dris, On a curious biconditional involving the divisors of odd perfect numbers, Notes on Number Theory and Discrete Mathematics, 23(4) (2017), 1-13. Jose Arnaldo Bebita Dris and Immanuel Tobias San Diego, Some Modular Considerations Regarding Odd Perfect Numbers, arXiv:2002.12139 [math.NT], 2020. Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, Conditions equivalent to the Descartes-Frenicle-Sorli Conjecture on odd perfect numbers - Part II, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 62-67. Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205. Index entries for sequences related to sigma(n). FORMULA a(n) = -A033880(n). a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008 a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013 G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017 a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017 From Antti Karttunen, Dec 29 2017: (Start) a(n) = Sum_{d|n} A083254(d). a(n) = Sum_{d|n} A008683(n/d)*A296075(d). a(n) = A065620(A295881(n)) = A117966(A295882(n)). a(n) = A294898(n) + A000120(n). (End) From Antti Karttunen, Jun 03 2019: (Start) Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples: a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n). a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n). a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n). a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n). a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n). a(n) = A318878(n) - A318879(n). a(A228058(n)) = A325379(n). (End) Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023 EXAMPLE For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - Omar E. Pol, Dec 27 2013 MAPLE with(numtheory): A033879:=n->2*n-sigma(n): seq(A033879(n), n=1..100); MATHEMATICA Table[2n-DivisorSigma[1, n], {n, 80}] (* Harvey P. Dale, Oct 24 2011 *) PROG (PARI) a(n)=2*n-sigma(n) \\ Charles R Greathouse IV, Oct 13 2016 CROSSREFS Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms). Cf. A000203, A033880, A074918, A075728, A192895, A286385, A286449, A295881, A295882. Cf. A083254 (Möbius transform), A228058, A296074, A296075, A323910, A325636, A325826, A325970, A325976. Cf. A141545 (positions of a(n) = -12). For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379. Sequence in context: A103977 A109883 A033880 * A324546 A033883 A106316 Adjacent sequences: A033876 A033877 A033878 * A033880 A033881 A033882 KEYWORD sign,nice,easy AUTHOR N. J. A. Sloane EXTENSIONS Definition corrected Jul 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 12:26 EST 2024. Contains 370352 sequences. (Running on oeis4.)