login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378600
Signed variant of Zumkeller deficiency: a(n) = signum(A033879(n)) * A103977(n).
4
1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, 0, 12, 4, 6, 1, 16, -1, 18, 0, 10, 8, 22, 0, 19, 10, 14, 0, 28, 0, 30, 1, 18, 14, 22, -1, 36, 16, 22, 0, 40, 0, 42, 4, 12, 20, 46, 0, 41, 7, 30, 6, 52, 0, 38, 0, 34, 26, 58, 0, 60, 28, 22, 1, 46, 0, 66, 10, 42, 0, 70, -1, 72, 34, 26, 12, 58, 0, 78, 0, 41, 38, 82, 0, 62, 40, 54, 0, 88, 0, 70
OFFSET
1,3
COMMENTS
If n is abundant, then negate the value of A103977(n), otherwise use as it is.
LINKS
FORMULA
If A033879(n) >= 0, a(n) = A033879(n), otherwise a(n) = -A103977(n).
PROG
(PARI)
A033879(n) = (n+n-sigma(n));
nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1, #v, if(v[i], listput(lista, i))); Vec(lista); };
A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d, 0, d)); };
A378600(n) = { my(d=A033879(n)); if(d>=0, d, -A103977(n)); };
CROSSREFS
Cf. A005100 (positions of terms > 0), A083207 (positions of 0's), A083211 (positions of negative terms), A156903 (positions of odd negative terms), A171641 (of even negative terms).
Sequence in context: A120112 A233150 A103977 * A109883 A033880 A033879
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Dec 04 2024
STATUS
approved