Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 04 2024 20:54:16
%S 1,1,2,1,4,0,6,1,5,2,10,0,12,4,6,1,16,-1,18,0,10,8,22,0,19,10,14,0,28,
%T 0,30,1,18,14,22,-1,36,16,22,0,40,0,42,4,12,20,46,0,41,7,30,6,52,0,38,
%U 0,34,26,58,0,60,28,22,1,46,0,66,10,42,0,70,-1,72,34,26,12,58,0,78,0,41,38,82,0,62,40,54,0,88,0,70
%N Signed variant of Zumkeller deficiency: a(n) = signum(A033879(n)) * A103977(n).
%C If n is abundant, then negate the value of A103977(n), otherwise use as it is.
%H Antti Karttunen, <a href="/A378600/b378600.txt">Table of n, a(n) for n = 1..20000</a>
%F If A033879(n) >= 0, a(n) = A033879(n), otherwise a(n) = -A103977(n).
%o (PARI)
%o A033879(n) = (n+n-sigma(n));
%o nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1,#v,if(v[i], listput(lista,i))); Vec(lista); };
%o A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d,0,d)); };
%o A378600(n) = { my(d=A033879(n)); if(d>=0, d, -A103977(n)); };
%Y Cf. A033879, A103977.
%Y Cf. A005100 (positions of terms > 0), A083207 (positions of 0's), A083211 (positions of negative terms), A156903 (positions of odd negative terms), A171641 (of even negative terms).
%K sign,new
%O 1,3
%A _Antti Karttunen_, Dec 04 2024