OFFSET
1,3
COMMENTS
Like the ordinary deficiency (A033879) obtains 0's only at perfect numbers (A000396), the Zumkeller deficiency obtains 0's only at integer-perfect numbers, A083207. See the formula section. Unlike the ordinary deficiency, this obtains only nonnegative values. See A378600 for another version. - Antti Karttunen, Dec 03 2024
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 10000 terms from Amiram Eldar)
FORMULA
If n=p (prime), then a(n)=p-1. If n=2^m, then a(n)=1. [Corrected by R. J. Mathar, Nov 27 2007]
a(n) = 0 iff n is a Zumkeller number (A083207). - Amiram Eldar, Jan 05 2020
From Antti Karttunen, Dec 03 2024: (Start)
a(n) = abs(A378600(n)).
a(n) = 0 <=> A083206(n) > 0.
(End)
a(p^e) = p^e - (1+p+...+p^(e-1)) = (p^e*(p-2) + 1)/(p-1) for prime p. - Jianing Song, Dec 05 2024
a(n) = 1 <=> A379504(n) > 0. - Antti Karttunen, Jan 07 2025
EXAMPLE
a(6) = 1 + 2 + 3 - 6 = 0.
MAPLE
A103977 := proc(n) local divs, a, acandid, filt, i, p, sigs ; divs := convert(numtheory[divisors](n), list) ; a := add(i, i=divs) ; for sigs from 0 to 2^nops(divs)-1 do filt := convert(sigs, base, 2) ; while nops(filt) < nops(divs) do filt := [op(filt), 0] ; od ; acandid := 0 ; for p from 0 to nops(divs)-1 do if op(p+1, filt) = 0 then acandid := acandid-op(p+1, divs) ; else acandid := acandid+op(p+1, divs) ; fi ; od: acandid := abs(acandid) ; if acandid < a then a := acandid ; fi ; od: RETURN(a) ; end: seq(A103977(n), n=1..80) ; # R. J. Mathar, Nov 27 2007
# second Maple program:
a:= proc(n) option remember; local l, b; l, b:= [numtheory[divisors](n)[]],
proc(s, i) option remember; `if`(i<1, s,
min(b(s+l[i], i-1), b(abs(s-l[i]), i-1)))
end: b(0, nops(l))
end:
seq(a(n), n=1..80); # Alois P. Heinz, Dec 05 2024
MATHEMATICA
a[n_] := Module[{d = Divisors[n], c, p, m}, c = CoefficientList[Product[1 + x^i, {i, d}], x]; p = -1 + Position[c, _?(# > 0 &)] // Flatten; m = Length[p]; If[OddQ[m], If[(d = p[[(m + 1)/2]] - p[[(m - 1)/2]]) == 1, 0, d], p[[m/2 + 1]] - p[[m/2]]]]; Array[a, 100] (* Amiram Eldar, Dec 11 2019 *)
PROG
(PARI)
nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1, #v, if(v[i], listput(lista, i))); Vec(lista); }; \\ Doesn't need to be 0-based, as we use their differences only.
A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d, 0, d)); }; \\ Antti Karttunen, Dec 03 2024, after Mathematica-program by Amiram Eldar
CROSSREFS
Cf. A125732, A125733, A005835, A023196, A033879, A083206, A083207 (positions of 0's), A263837, A378643 (Dirichlet inverse), A378644 (Möbius transform), A378645, A378646, A378647 (an analog of A000027), A378648 (an analog of sigma), A378649 (an analog of Euler phi), A379503 (positions of 1's), A379504, A379505.
Cf. A378600 (signed variant).
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Jan 01 2007
EXTENSIONS
More terms from R. J. Mathar, Nov 27 2007
Name "Zumkeller deficiency" coined by Antti Karttunen, Dec 03 2024
STATUS
approved