OFFSET
1,18
COMMENTS
A379505 is a variant where two 1's are considered indistinguishable. See comments there.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000
EXAMPLE
a(18) = 2 as its divisor set with an extra 1 is [1_a, 1_b, 2, 3, 6, 9, 18], and this can be partitioned to two sets with equal sums either as 1_a+1_b+3+6+9 = 2+18 or as 2+3+6+9 = 1_a+1_b+18.
a(36) = 8 as its divisor set with an extra 1 is [1_a, 1_b, 2, 3, 4, 6, 9, 12, 18, 36], and this can be partitioned in any of the following ways:
1_a + 1_b + 2 + 6 + 36 = 3 + 4 + 9 + 12 + 18,
1_a + 2 + 3 + 4 + 36 = 1_b + 9 + 6 + 12 + 18,
1_b + 2 + 3 + 4 + 36 = 1_a + 9 + 6 + 12 + 18,
1_a + 3 + 6 + 36 = 1_b + 2 + 4 + 9 + 12 + 18,
1_b + 3 + 6 + 36 = 1_a + 2 + 4 + 9 + 12 + 18,
1_a + 9 + 36 = 1_b + 2 + 3 + 4 + 6 + 12 + 18,
1_b + 9 + 36 = 1_a + 2 + 3 + 4 + 6 + 12 + 18,
4 + 6 + 36 = 1_a + 1_b + 2 + 3 + 9 + 12 + 18,
where each sum on the left and right hand side gives (sigma(36)+1)/2 = 46.
PROG
(PARI)
partitions_into_distinct_parts(n, parts, from=1) = if(!n, 1, if(from>#parts, 0, my(s=0); for(i=from, #parts, if(parts[i]<=n, s += partitions_into_distinct_parts(n-parts[i], parts, i+1))); (s)));
A379504(n) = if(!issquare(n) && !issquare(2*n), 0, my(divs=concat(1, divisors(n)), s=sigma(n)); partitions_into_distinct_parts((s+1)/2, vecsort(divs, , 4))/2);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, Jan 06 2025
STATUS
approved