OFFSET
1,1
COMMENTS
Number of terms <10^n: 0, 0, 0, 0, 2, 7, 24, 83, 250, 792, 2484, 7988, 25383, 80082, ..., . Not all are a multiple of 25, i.e.; 81162081 = 9009^2 = (9*7*11*13)^2. See A156943.
Any term must be an odd square. Square roots are in A174830.
Indeed, the sum of divisors of any number isn't odd unless it's a square or twice a square (A028982), and to get the abundance, twice the number is subtracted, so the parity remains the same. - M. F. Hasler, Jan 26 2020
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from R. G. Wilson v)
FORMULA
a(n) = A174830(n)^2. - M. F. Hasler, Jan 26 2020
MATHEMATICA
fQ[n_] := Block[{ds = DivisorSigma[1, n] - 2 n}, ds > 0 && OddQ@ ds]; Select[ Range[1, 12006223, 2], fQ @# &]
PROG
(PARI) is(n)=my(s=sigma(n)); n%2 && s>2*n && (s-2*n)%2 \\ Charles R Greathouse IV, Feb 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 18 2009
EXTENSIONS
Edited by Robert G. Wilson v at the suggestion of T. D. Noe, Mar 30 2010
STATUS
approved