login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379501
a(n) = (3/2)*A019565((2n-1)^2) - A019565(A001065((2n-1)^2)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.
3
2, 16, 216, 422, 470, 51016, 5082, 4446, 864, 106688, 1301846, 880, 204182, 1985872, 236964, 646310, 1030, 176778, 2799756, 96178962, 563400, 62092576, 1566805968, 27274, 559406, -16252236, 1040774592, 263042394, 7794826, 115781204, 13256922, -16386856, -1230440, 376172, -67188814, 222905278, 13547232, 28352541646
OFFSET
1,1
FORMULA
a(n) = A379496(A016754(n)) = A019565(1+A016754(n)) - A379495(A016754(n)).
a(n) = (3/2)*A019565(A016754(n)) - A379495(A016754(n)).
PROG
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A379501(n) = { my(osq=((2*n)-1)^2); ((3/2)*A019565(osq) - A019565(sigma(osq)-osq)); };
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 05 2025
STATUS
approved